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Abstract. Boundary-layer transition in transonic external flow is addressed theoretically. The transonic area is rich
in different flow structures, and transition paths, and the work has wide potential application in transonic
aerodynamics, including special reference to the example of flow transition over an engine nacelle. The investigation
is intended partly to aid, compare with, and detect any limitations of, a quasi-parallel empirical methodology for
design use in the area, especially with respect to the transonic range, and partly to develop an understanding and
possible control of the nonlinear natural or by-pass properties of the compressible transition present. The
mechanisms behind three major factors, (a) substantial external-flow deceleration, (b) rapid boundary-layer
thickening, (c) three-dimensional nonlinear interactions, are identified; these three are involved in the specific
application above and in more general configurations, depending on the disturbance background present. It is found
also that some similarities exist with the phenomenon of buffeting on transonic airfoils, and the relevant physics and
governing equations throughout are identified. Sensitive nonlinear effects are important in all the factors (a)-(c),
especially a resonance linkage between shock buffeting and boundary-layer thickening, and nonlinearly enhanced
three-dimensional growth triggered by slight three-dimensional warping for instance, peculiar to the transonic range.
The latter enhanced growth is perhaps the most significant finding. The implications, in the general setting as well as
for the nacelle-flow context in particular, are also presented.

1. Introduction

This paper describes research on nonlinear theory addressing boundary-layer transition in
transonic flow. Little or no nonlinear theoretical study appears to have been made for
transonic transition as far as we can tell; yet the area turns out to be rich in fluid-dynamic
interest, on the one hand, and it has many applications in transonic flows on the other. Our
study was motivated initially by concern over transition in the flow on an engine nacelle,
numerous discussions of which took place between the authors and Dr Wes Lord and
colleagues at Pratt and Whitney. The specific characteristics of that transitional flow in
practice seem to be its transonic nature and the significant variation in pressure gradient
driving the boundary layer, especially during deceleration. Other specific features of note are
a slight warping of the nacelle from its axisymmetric design shape, and the possibilities of an
induced shock and a rapidly increasing boundary-layer displacement, perhaps provoking
separation, during the deceleration and transition. These nacelle-flow characteristics partly
prompt the current research. At the start of the theoretical research a number of options had
to be sifted through and considered, including different instabilities, pressure-gradient
effects, mode interaction, linear and two-dimensional (2D) as opposed to nonlinear and 3D,
and so on, and from among these options the main findings are described in the present
paper. There is wide application however throughout the transonic regime.

Viscous-inviscid interaction almost certainly plays a key role, we feel, in many of the
applications, and often in fact there may well be a close resemblance between the nacelle
transition above and the phenomenon of large-scale buffeting on transonic airfoils, a
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nonlinear unsteady phenomenon where, in effect, viscous-inviscid interaction takes place
between the strong external disturbance (a moving shock) and strong internal responses
(downstream transition and/or separation): see experiments and computations in Bogar [1],
Dolling and Brusniak [2], Dolling [3] for example. The interaction when it occurs may also
be regarded in some cases as a form of by-pass transition, in 2D or 3D (while in other cases it
is slower transition). The major difference in the nacelle-flow context is a matter of the
smaller length scales involved. So a nonlinear linkage between the unsteady flows inside and
outside the compressible boundary layer seems essential in such cases, and that provides part
of the present focus. The linkage, and the unsteadiness, point directly to an examination of
unsteady interactive boundary layers (IBL) and Tollmien-Schlichting (TS)-like waves but
with emphasis on nonlinearity and transonic flow. The idea in such cases is that the external
disturbance, e.g. due to an oscillating shock or flow deceleration, can set up an adverse
pressure gradient sufficient to trigger boundary-layer transition, which in turn then alters the
external flow and reinforces the shock movement, and hence the whole 2D or 3D
interaction.

Given that setting, an aim here is to account for the significant effects of: (a) substantial
external-flow deceleration, (b) rapid boundary-layer thickening, (c) 3D nonlinear interac-
tions (e.g. stemming from warping), in transonic boundary-layer transition. The 2D non-
linear theory discussed in Section 2 below provides a useful starting point, with Sections 3
and 4 then moving on from there, to tackle the particular characteristics (a)-(c) above. The
above features may appear to be rather particular of course, but the present work also
addresses transonic transition more generally as we see below.

We concentrate throughout on transition properties that are specific to the transonic
range. It is true that there is no completely satisfactory transition theory as yet for flow at
any free-stream Mach number M., despite a large amount of literature (e.g. Van Driest and
Blumer [4], Dunham [5], Arnal [6], Morkovin [7], Smith [8], Roberts [9], Abu-Ghannam
and Shaw [10], Narasimha [11], Gostelow and Blunden [12], Smith and Gamberoni [13], Van
Ingen [14], Cebeci and Egan [15], Cebeci [16]) on the theoretical and experimental aspects
and empirical transition criteria at various flow speeds. Nevertheless, the nearest so far to
such a transition theory seems to be that being developed for high Reynolds numbers Re
described in Smith [17-19, 20, 21, 8], et al. [22-28], Bowles [29], for examples, mainly for
the incompressible regime but more recently for compressible boundary layers (Smith [21],
Smith and Walton [28], Bowles [29], Hall and Smith [30], Brown et al. [31]), and here we
adopt that general theoretical approach. The approach tends to distinguish between gradual
transition and by-pass transition, dependent upon the input frequencies, amplitudes and
wavenumbers. The former route typically has linear 2D TS disturbance growth first, say on a
flat plate, then 2D nonlinear growth and 3D secondary instability, closely followed down-
stream by strong 3D nonlinear focusing, amplification and break-up, possibly leading then to
turbulence. The successive 2D and 3D stages involved, including resonant-triad interactions,
3D focusing and induced Euler-scale interactions, are described in the references above, as is
the by-pass transition route which essentially activates the later high-amplitude stages
directly. The approach has been shown (Smith and Stewart [25], Smith [21], Smith,
Papageorgiou and Elliott [32]) to agree quantitatively and/or qualitatively with experiments
and direct Navier-Stokes simulations, although the latter are confined still to relatively low
Re, and it suggests the application of IBL methods for transition prediction. In the present
context, a number of new features unique to the transonic range are identified.

The 2D transonic range addressed in Section 2 is found to produce broadly the same linear
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and nonlinear properties as arise in the pure subsonic or supersonic regimes, with some
notable exceptions, e.g. at higher amplitudes. The alternative 2D nonlinear range in Section
3, however, shows two substantially different aspects arising, namely external shock effects
and internal separation effects, corresponding to (a), (b) above. The nonlinear linkage
between (a), (b) provides a by-pass mechanism (as in buffeting or shock flutter) which is
potentially powerful locally and could readily induce transition. Likewise, the 3D influence
(Section 4) corresponding to (c) above turns out to be very important, in particular yielding
substantial differences between linear and nonlinear behaviour and between 2D- and
3D-based predictions, in the transonic range. Thus new forms of three-wave resonance, of
strong 3D nonlinear growth with focusing, and of vortex-wave interactions, are found
throughout the transonic regime, along with a distinct effect produced by slight 3D warping
of an otherwise 2D input disturbance upstream. This last is perhaps the finding of most
interest and may be of significance for the nacelle configuration outlined at the start of this
section as well as in other transonic-flow applications. Both slight warping, i.e. the
low-spanwise-wavenumber content of the input, and enhanced 3D input, at much higher
spanwise wavenumbers, provoke spatial focusing and amplification fast nonlinearly, in
contrast with the spanwise wavenumbers in-between and with 2D theory. These and other
3D aspects (among which we should mention especially the so-called major mode) are
described in Section 4, while Section 5 provides further discussion of the overall features
including comments on alternative theory, e.g. eN methods, on alternative transition routes
for the transonic boundary layer (see [17]), and on implications for the nacelle-flow context
in particular.

Notation. Nondimensional velocity components (u, v, w) and corresponding cartesian
coordinates (x, y, z) are used such that the local planar external flow speed and the
characteristic length scale, e.g. airfoil chord, are both 1, with the pressure p, density p,
temperature T, viscosity /x and time t being nondimensionalized similarly. The corresponding
Reynolds number Re is large, the Mach number M, is usually taken to be near unity, and
the Chapman viscosity law is assumed without loss of generality. Locally the body surface
coincides with y = 0, and x, z are the streamwise and spanwise coordinate in turn, while the
oncoming boundary-layer thickness at the station (x0, 0, z 0 ) in question is of the order
Re-1 /2

2. Transonic unsteady interaction

In this section, the linear and nonlinear unsteady-flow features of a first transonic stage,
regime I defined by (2.2) below, are considered with regard to transition. Several distinct
transonic properties are found, and the theory also provides a lead-in to the transonic
transition properties investigated in Sections 3 and 4 concerning a second transonic regime
and 3D features. The following sub-sections deal with the transonic stage I, the nonlinear
high-frequency response, higher-amplitude phenomena, and the Euler stage with related
comments, in turn (see also Fig. 1).

2.1. Transonic stage I

We start by comparing the typical wave speed and the speed of sound in the free stream. In
pure subsonic or supersonic flow, information travels much faster in the outer free stream,
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upstream or downstream, than the rate associated with the relatively slow TS waves, and so
in TS interactions the outer response is then quasi-steady. In a transonic stream, by contrast,
the outer rate of travel is slow, and it turns out that a significant new regime comes into
operation when the two rates, that of free-stream propagation and that typical of TS waves
becomes comparable.

The new unsteady transonic regime is found, after some working, to be given by the
following triple-deck scales around a typical station x0, zo:

[x - Xo, z - zo, t] = [Re-3'9blX, Re-5l 8 b4 Z, Re 2/9 b2 T] , (2.1a)

y = Re-"'18b3 Y (lower deck), y = Re-518 b45y (upper deck) , (2.lb)

[u, v, w, p - p-] = [Re-1/9 b5U, Re-7/ 18 b6 V, Re1/18b5 b4bl W, Re-2/9b7P] (2. 1c)

at large Re, where (2.1c) holds for the lower deck, nearest the wall, the main deck
corresponds to the O(Re- 1/2) y-scaling of the oncoming boundary layer, and the upper deck

M 2 1 + -Re -/9

-

Fig. (a). Disturbance structure.

ONCOMING |
FLOW

m aLW ~ eWAVE-MACH CONE

Fig. (b). Disturbances directed inside wavecone.

Fig. 1. (a) Nonlinear disturbance structure for regime I, where M' - 1 = O(Re-"9
). A 2D oncoming flow is

subjected to a 3D disturbance of small angle to the oncoming flow, inside the wave-Mach cone with
tan 0 (M - 1)1/2 - Re-l'l. (b) The relation (2.4) has solutions corresponding to growing waves directed inside
the wave-Mach cone. (c) Solution of the dispersion relation (2.4) for the growth rate (-a,) of 2D disturbances in a
subsonic ( < 0) or a supersonic ( > 0) free stream. (d) Solutions of the system (2.12a, b) at times T = 0.6, 1.2,
1.8. Here m = -1 and the forcing is a wall displacement equal to 10(X + 3)T exp[-(X + 3)4 - T2 ]. A wave packet
is seen to travel downstream away from the disturbance location.
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FREQUENCY n
Fig. 1(c). Two-dimensional growth rates vs 1f from Equation (2.4), 32 = 0.
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lies just outside the boundary layer. The b are 0(1) constants, specifically b = C(Tw/

T. )rAs, with C being the Chapman constant in the viscosity-temperature law, A is the local
skin-friction factor, T/T, is the local temperature ratio, and q = 29, 18' 18, 9, , r =
a 1 0 5 , i - 7 - 3 7 4
9, 1, 9, , , s=- , 97, 9-, - , , , for n = to 7 in turn (see Fig. 1).
Moreover, this transonic stage has

(M 2 - 1) = Re-" 9b 5r, (2.2)

with mh typically of order unity. In consequence the Navier-Stokes equations reduce to the
viscous-inviscid interaction system consisting of the unsteady boundary-layer equations,

Ux + v + Wz =0, (2.3a)

UT + UU + VUY + WU = -PX + UYY, (2.3b)

Wr + UWx + VWY + WW z = 0 + W,, (2.3c)

with

U=V=W=O at Y=O and U-Y+A, W--->O, as Y e-->o (2.3d)

(for no slip and matching to the main deck), coupled with the unsteady linearized TSP
(Transonic Small Perturbation) equation

mPxx - Pzz + 2PT = P (2.3e)

subject to

P-->0 as y7-o and P->P, P---> Axx, as y-0. (2.3f)

Here, in scaled terms, -A is the unknown displacement caused by the disturbance in the
boundary layer, while P, P are the unknown wall pressure and external pressure respectively,
and P, A depend on X, Z, T, with U, V, W dependent on X, Y, Z, T. The constraints in
(2.3f) ensure the matching with the oncoming stream and between the upper and main
decks, in turn. The main novel features in this regime are the unsteady contribution in the
outer TSP balance (2.3e), the insignificant transverse pressure gradient in (2.3c), and the
property that any waves produced for th >0 (see below) can be directed close to the
wave-Mach cone which is narrow of characteristic angle O(Re-l"'8 ), from (2.1a).

Interest centers, then, on the nonlinear system (2.3). In preparation for the nonlinear
analysis below, it is noteworthy that linearization, for small disturbances -- exp{i(aX+
,3Z- flT)}, leads from (2.3) to the eigenrelation

a2(ia)l/3(k/Ai')(o) = (2fla + P82 - rha 2 )1 / 2 (2.4)

between the frequency and the wavenumbers a, 3. Here the real part of the right-hand
side must be positive, k= f0 Ai(q) dq and the argument of 0 = -il/"3I(a)2 '3 lies between
-ir/3 and r/3 (see Fig. 1). Further, for high frequencies f, in the 2D case 3 = 0 say, (2.4)
yields the behaviour
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a - 3'5&{1 (1 + i)&(2 - am) } (2.5a)
a 21 /3 / 10 - 2m)

where

m = Q-2/5 rn , Jm<2 and a 3={(2- m)} 1 / 2 . (2.5b)

This acts as a guide for the following nonlinear theory, where it is assumed that W in (2.3) is
identically zero (we expect that for many flows w is only O(Re-3/ 18 )) with any three-
dimensionality entering then through the Z-dependence in the TSP equation (2.3e). We note
in passing that the alternative of high-wavenumber focussing via (2.5a) is mentioned in Ref.
33 for linear waves, similar to that in Ref. 34. In the nonlinear framework this would
presumably lead on instead to the finite-time break-up of Refs. 17, 34, as an alternative to
what follows.

2.2. Nonlinear high-frequency response

The nonlinear unsteady transonic-flow properties are considered now for relatively high
frequency since such frequencies, and the corresponding short-scale waves, have been shown
(Refs 22, 25) to reflect part of the natural transition process in incompressible boundary
layers. The relative Mach number rn is scaled with f2/15 as indicated by (2.5), with f = IaTI
being large, which preserves the temporal-spatial balance in (2.3e), and we concentrate on
the 2D case W= a, 0 as a starting point, granted that 3D effects are usually strong in
transition. The slow spatial growth of order 11-3/10 suggested by (2.5) can then balance a
weak nonlinear effect if the pressure size P is typically of order l17 /20

. Hence this nonlinear
regime has the multiple-scale expansion

[U, V, P, A] = [E(u o + e 9u + E18 u 2), E-I(Uo '' '), -7(PO + + * *), E(Ao + *'*)] + '',
(2.6a)

ax -> E- 2[aXo + e9a- + E18aX2+ ... ] , r - 20[Oto+ e9,l + ' -, + * * ' ] , (2.6b)

with E = n-1/20 small, and y = E16y, Y = °Y, while rh = Qf2/ 5 m is large positive (supersonic)
or negative (subsonic). The resulting properties are summarized as follows.

At leading order, substitution into (2.3) yields solutions of the form

Po = Po E + c.c., E = exp[i(&X0 - t)], (2.7)

and similarly for UO, Vo, A 0, where the wave E contains all the fast Xo-, to-dependence, Po
etc. remain undetermined, and the quasi-inviscid eigenrelation (2.5b) is obtained, as
expected.

At second order, the nonlinearity causes harmonics and mean-flow corrections to be

induced, along with additional fundamental waves, such that

P = E2 c.c. + 1M + P2E2 + c.c. (2.8)

and so on. Here P12 etc. can be determined in terms of Po, e.g. P2=-2p01,
A12 = - 3 P 1,/2, whereas the extra fundamental leads to the linear equation
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aPo/lat, + cgdPoi/8 xl = 0, (2.9)

indicating that the unknown pressure amplitude P travels at the group velocity
cg (2&5 + 1)/(a6 + ) in the X,-t, frame. This velocity, we note, increases like -l for
small 5.

At third order, we then obtain the following Ginzburg-Landau equation for the nonlinear
development of the high-frequency distribution Po,:

(1+ , f() a2 , = (1 - i) 5i a4P0ll (2.10a)
(1 + 0.) -1 - X~-2 2 1/2 Pm-10-at, a a- P2 1 1P0 112

where

~-s (-(/2- 1).c.=a and f(o.)=1+ (l )2 (2.10b)

In (2.10a) the linear growth term on the right is due to viscous effects from the Stokes
layer and the cubic nonlinear contribution comes partly from harmonic forcing and partly

from the mean-flow correction. Mach-number dependence is present via the m-a relation
(2.5b), and the term f is always positive, as o->2 from (2.5), with the case cr--2+
corresponding to small Iml, i.e. to Ih I less than the order f12/5

. Since the cubic coefficient is
pure imaginary, (2.10a) is therefore a scaled version of the nonlinear equation for the
incompressible case studied in Ref. 20, where it is shown that the wave packet grows in
amplitude and spreads spatially in an exponential fashion with amplitude I PoJ - exp(2"/ 2t2/

3) and typical Xl-scale -exp(2' 2 t2/3) downstream at large times. This gives the perhaps
surprising result that no qualitative difference from the incompressible regime is found as yet
(cf. below).

The amplitude growth far downstream leads however to the distinct nonlinear regime
studied next.

2.3. Higher amplitudes

The next regime implied downstream has increased pressure amplitude, with

[U, V, P, A] - [12/ 5, -Q/2, W4/5, I2/5], (2,11a)

[axaTyv, ] - [ 3 / s , Il /2, 4/], (2.11b)

and again umh f 2 /5. These scales correspond to most of the boundary-layer properties
becoming fully nonlinear but inviscid, so that in effect (2.3b) holds with the U,, term
omitted, while the uniform shear term in (2.3d) is also absent. A solution then is simply
U = A, which leads to the momentum balance

A + AAX = -P,. (2.12a)

This is coupled with the TSP response (2.3e, f), which can be written in the integral form

1 A,,(s, / ds di(
23f f T )dS [X X-r(T-i)2] (2.12b)

-m(-i)'/2 (XY- s) 3 / x r
- r - i)2
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to provide two equations, (2.12a, b), controlling P, A. As in the incompressible cases studied
in previous works, vorticity bursting from the nonlinear viscous sublayer near the wall,
where Y is 0(fl-112 ), is likely to occur especially for severe gradients A x and forms an
important extra ingredient in the nonlinear transition process, but again, as a first step, the
bursting is neglected here.

The present nonlinear system (2.12a, b) is a transonic counterpart of the Benjamin-Ono
and Burgers equations holding in the pure subsonic and supersonic cases respectively (Ref.
22), but it is distinct in that the pressure-displacement law (2.12b) is not quasi-steady. Those
pure subsonic and supersonic nonlinear cases are stable and indeed can be obtained as
special limits of the present system; for example, simple traveling-wave solutions of
(2.12a, b) dependent upon (X - cT) are governed either by the Benjamin-Ono form

(A - c)A x = -(2c- r 2 A (s) ds (2.13a)
7T c)A,- J-(X- s) '

for relative subsonic flow where (2c - rh) > 0, or by the Burgers form

(A - c)A x = 12c - rhI 1 2 Axx (2.13b)

in relative supersonic flow where (2c - th) < 0. The appropriate solutions then are always
smooth, even though severe gradients can develop. A similar match-up for non-simple waves
can be verified at relatively large positive or negative m values. The full properties of (2.12a,
b), in contrast, are unknown and require numerical investigation, there being particular
interest in the possibility (suggested by an order-of-magnitude argument) that finite-time
singularities may develop in this transonic regime. A computational study of the fully
nonlinear problem is under way (see also Fig. 1).

2.4. The Euler stage, and further comments

At larger I I the flow enters the pure subsonic or supersonic regime and larger disturbances
are needed if the fully nonlinear responses are to be maintained. This can be checked as
follows. In the nonlinear inviscid transonic stage of (2.12) rh (or m) can be factored out by
scaling P, A, X, y, T with m2, mh, rm- 3 2

, tm- 2
, respectively. So, e.g., the streamwise

length scale becomes O(Re-39rh-3/2), from (2.1), and that shortens to the boundary-layer
scale O(Re -1 /2 ) when th reaches O(Re/ 9 ), which is exactly when IM_ - 11 becomes 0(1) in
view of (2.2). Simultaneously the typical upper-deck extent Re-51 8srh-2 reduces to Re - 1 /2,

the same scale, and the velocities u, v and the pressure variation p all increase to O(1).
Hence an extension of (2.3) to pure subsonic or supersonic flow points to the compressible

Euler stage, of increased amplitudes and faster spatial and temporal variation, with the
unsteady nonlinear Euler system

Qt + (Q)x + (Qv) =0, (2.14a)

Q(u, + uu, + vuy) = -Px (2.14b)

C(V, + uvX + VVy) = -p , (2.14c)

Q(Pt + upX + vp) = yp(e, + uQx + ve() ,
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(u, v,, P)- (1, 0, 1, y-'M2) as y- , (2.14e)

v=0 at y=O (2.14f)

holding across the boundary layer, x, y, t all being scaled on Re -" /2 and IM. - 1i being
0(1). This nonlinear unsteady system tends to that in Section 2.3 as M---> 1+, as expected.
It is of further interest because it also captures the nonlinear versions of compressible
inviscid modes, for which only linear theory, e.g. Refs 35 and 36, has been studied hitherto
(apart from the present work and studies by Dr J.S.B. Gajjar), and nonlinear inflexional
modes due to an adverse external pressure gradient are also incorporated.

The same Euler stage is encountered if the input frequency fI in Sections 2.2 and 2.3 is
raised to the order Re5/8, since rh is scaled with 112/5 and therefore increases again to
O(Re'/ 9). Moreover, viscous sublayer bursting is again likely, analogous to that described in
Section 2.3. The major points, however, are these: first, there is no clear sign yet of
transition occurring more readily in the transonic regime than in pure subsonic or supersonic
flow, in contrast with the next two sections; second, the transonic regime of Sections 2.2 and
2.3 may provide an analytical and more understandable guideline to the nonlinear unsteady
response in the Mach-number range of practical concern. A third point here concerns
nonparallel-flow effects, due for instance to shock-wave/boundary layer interaction and/or
flow separation. These effects are relatively small in the situations addressed so far (cf. below
however), due to the short length scales involved, and they can be encompassed as secondary
effects in the manner of Refs 20, 22, 26. We find that the resulting growth rate in the
transonic regime is given by

Gr = 13/1021/2& - 21m[1/ 4 dA 1 + f(a) 21
L dX ( (2 + a) 2(2+ ) (2.15)

where the first contribution in curly parentheses is the viscous one (as in (2.5)) whereas the
second contribution gives the nonparallel effect from a basic flow with displacement -A(X).
As in the incompressible case, therefore, an increasing displacement where -dA/4dX is
positive produces an extra destabilizing effect, e.g. in breakaway separating flow (-dA/
dX-- o) the destabilization increases dramatically downstream (see also Refs 23, 26). This
ties in with the effects of separation studied in Section 3. Finally, the connections are noted
with Appendix A below, at large h in effect, with the alternate high-frequency range studied
in Appendix C, and with the transonic stage II addressed in the next section, as well as with
the 3D properties in Section 4.

3. The transonic regime II

The flow structure in this regime II is for local Mach numbers closer to unity than in I. Like I
the present stage can incorporate separation in the boundary layer, a strong destabilizing
influence, but in contrast with I the present regime is able also to incorporate directly the
presence of an external shock impinging on the boundary layer, by virtue of the nonlinearity
in the flow just outside the boundary layer (see also Fig. 2). In what follows, the interactive
flow structure is summarized in Sub-Section 3.1, its small-disturbance properties are consid-
ered in 3.2 for non-separating motion, and then 3.3 deals with the effects of separation and
shock oscillation.
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3.1. The interactive flow structure

The current flow structure at large Reynolds numbers holds for both 2D and 3D flows, at
Mach numbers Mo of size 1 + O(Re-'/ 5 ), and the flow solution has the form

[x - x 0 , z -z 0 , t] = [Re-3/' 0bX, Re-l/5 b2 Z, Re-l'°1 b3 T] , (3.la)

y = Re-3/5b4 Y (lower deck), Re- 1l 5b 2y (upper deck), (3.lb)

u, v, w, p - p] = [Re-1 0 b U, Re- 2 5bV, Re-1 'b 5 b2b W, Re-1Sb7 P] , (3.1c)

31 1where the order-one constants bn, for n = 1 to 7, are as in Section 2 except that q = 13, 5, 10,
3 12 1 3 333 ½ ½ s 7 8 9 41425 10, r= 2 , = , , , 5, , , respectively. Again, (3.1c)
applies for the lower-deck flow, while in the upper deck just exterior to the boundary layer
the normalized velocity potential is given by

q = x + Re-1'2 blb7 , (3.2)

and the Mach number satisfies

M - 1 = Re- 1 sb7 ri (3.3)

with ri being typically 0(1). The resulting governing equations for this regime II are the
quasi-steady boundary-layer equations holding near the surface,

Ux + VY + Wz = 0, (3.4a)

UUx + VUy + WUz = - Px + UYY, (3.4b)

UW + VW + WWz = 0 + WyY, (3.4c)

subject to

U=V=W=O at Y=O and U-Y+A, W-->0, as Y--c>, (3.4d)

interacting with the unsteady nonlinear TSP equation which controls the upper-deck
properties:

+ zz = [rn + (y + 1)0x]0qxx + 2 XT,' (3.5a)

subject to

x-->-P, y --- A x , as ->O0, (3.5b)

and to the appropriate farfield conditions.
We concentrate again on the case of zero spanwise velocity within the boundary layer,

W- 0, leaving 3D effects to arise only via the nonlinear TSP balance (3.5a). These 3D
effects are then addressed for the most part in Section 4 since here the stress is on nonlinear
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features, for which the simpler 2D version forms a useful test-bed. It should be remarked
also here that the physical balances in (3.4), (3.5), with the lower deck responding
quasi-steadily and the upper deck being fully unsteady, but both nonlinear, are distinct from
those in the transonic regime I (see (2.3)) and in the pure subsonic and supersonic regimes
where full unsteadiness concentrates in the lower-deck balances.

In the current regime controlled by (3.4), (3.5) shocks can occur, depending on the
effective Mach number i, because of the nonlinear TSP behavior in (3.5a). The steady-flow
problem for instance is studied by, among others, Refs 37, 38, the latter including
separated-flow situations for sufficiently strong shocks. The shock strength is still sufficiently
low however that the potential-flow approximation remains valid. In the present unsteady
case the jump conditions across any shock occurring follow from the Rankine-Hugoniot
relations and take the form, for 2D motion,

01= 2, (3.6a)

+(2 )(x + 2 X) = G2 + 2GT (3.6b)

at the shock given by

X= G(y, T). (3.6c)

If the shock shape is written instead as = F(X, T) then (3.6b) is replaced by

mF x2+ 
2 FXFT = 1 - (y + 1)F2(41 X + +2x)/

2 . The subscripts 1, 2 refer to the solution values
immediately upstream and downstream of the unsteady shock.

The additional conditions on the potential , in the farfield, are problem-dependent but
the constraint Ox - 0 far upstream is usually relevant and typically Ox should be negative at
downstream infinity due to the shock-induced losses. It is noted that the transformation

d + rXI(y + 1) ---> corresponds simply to a re-definition of the oncoming free-stream
speed and pressure, in effect suppressing the ri term in (3.5a) and hence the Mach-number
dependence. In similar vein, travelling-wave solutions of (3.4), (3.5) with speed c, say,
reduce to the steady version mentioned earlier but in a moving frame such that the effective
Mach number ni is replaced by (i - 2c). So, for example, a downstream-travelling shock of
positive speed c can render a supersonic portion of the flow ( > O0) effectively subsonic if
the speed c exceeds m/2; conversely, an upstream-travelling shock, where c < 0, produces
effectively supersonic motion (solvable by characteristics) if Icl > -m/2, even in a subsonic
portion where ri < 0. This change in type may be significant in terms of the stability and
transition characteristics of the boundary layer since these latter characteristics depend on
whether the flow is effectively sub- or supersonic.

3.2. Small-disturbance properties (non-separated)

Linearization of the governing equations (3.4), (3.5) about the basic attached-flow state
(with U- Y and small, compare the next section) leads to the dispersion relation

a 2(ia) 1 3/(3Ai'(0)) = (2a + 32 - ia 2
)/

2 (3.7)

for waves -exp(i(aX + 13Z - fiT)). Here (3.7) merges with the earlier relation (2.4) but
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produces only stable disturbances, traveling upstream, for both the super- and sub-critical
ranges rn 0.

For the supersonic range, Ah > 0, first, the case of zero frequency fI yields the steady-flow
eigenvalue a = -ih 3' 8 d-3' 4 r3 governing upstream influence in supersonic boundary layers,
where d[-3Ai'(0)]- ' >0 and r satisfies r4 - r6 = d3/2 3.-7/4,2 . Here 2D disturbances

have zero /3 and hence r = 1, whereas 3D disturbances with large/3 yield r- d3/28 m rn- 
and hence a is then independent of the Mach number, a result which connects with the 3D
theory in Section 4.5 below. In unsteady flow, as fl increases the asymptote a - exp(-77ri/
11)(2f/d 2) 3 /'1 is attained at large fl, for any /3, producing short-wavelength disturbances
which travel upstream and decay rapidly.

For the subsonic range, second, where h < 0, the large-fl and the large-,3 -zero-frequency
properties are the same as above. For 0(1) values of /3 however the zero-frequency case has

Ir I replacing h in the formulae for a in the previous paragraph along with a sign change in
the r6 term. In consequence we now have r - d 1X41h -7 /24 ,31/3 at small /3, implying that such
upstream influence in steady subsonic motion is possible only for 3D disturbances with
"angles" more oblique than tan-l(IAtll/2), cf. the wave-Mach cone in Ref. 21. Further, in
the unsteady case of nonzero f these subsonic modes are subject to a cut-off, for any ,
where the required free-stream decay is lost. Thus if the value of [d 3 141rl - 11/8/cos
(2rr/7)]1 /3 lies between the positive roots of r'4 - r6 + d3 121rhl-7432 =0 then no waves
exist; while outside this range of frequencies fl the waves that do exist yield only
upstream-travelling decaying disturbances again. It is found that there are no such roots if
d3 /21rhi- 7 /4 2 >(5/14) 3 14 - (514)7 14[=0.297]. So as the flow becomes locally more sub-
sonic, corresponding to increasingly negative th, a wider range of /3 values becomes cut off.

Given the above stability features of the non-separated flow in this regime II, there is next
the issue of whether destabilization, linear or nonlinear, may be provoked either by the
presence of a shock, or by separation due to a sufficiently large pressure rise, or possibly
both. The shock effectively splits the streamwise interval into two semi-infinite ones,
invalidating the usual normal-mode decomposition, while any separation alters the basic flow
and hence its stability characteristics. Both are in addition nonparallel-flow phenomena, and
indeed the predictions below concerning the effects of separation are analogous to the
nonparallel flow-instability result (2.15), in effect for enhanced separation amplitudes. The
shock and the separation effects are tackled in the following sub-section.

3.3. Effects of separation and shock oscillation

The quasi-steady boundary-layer response (3.4) controlling the lower-deck behavior can
accommodate separation caused by an incident shock (Ref. 38), at least within the limits
described subsequently in Section 5. The unsteady small-disturbance properties of such a
separating flow, or any grossly disturbed motion which provokes positive boundary-layer
displacement, are then of much interest since they are found below to exhibit potential
instabilities, as opposed to the pure stability demonstrated for the non-separated flow in the
previous section. The destabilization can be modelled by the inviscid formulation of Ref. 23
for linearly or nonlinearly disturbed separating flows in which the governing equations are

UUx = -Px, (SU)x = O, (S + A)(S + A)x = -Px. (3.8a-c)

Here (U, P, S, A)(X, T) denote in turn the velocity between the separated shear layer and
the surface, the pressure, the shear-layer position and the negative displacement of the
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boundary layer, all of which are unknowns, and the system is completed by the pressure-
displacement law stemming from the TSP balance (3.5). Small unsteady disturbances of high
wavenumber a therefore lead to the boundary-layer response

[1 + S(S + Ao)/IU]p= -(S + A)A (3.9a)

from (3.8), the subscript zero standing for the basic separated flow, and the instability of the
interactive flow is then dictated by (3.9a) coupled with the TSP relation in 2D,

P = 2 [a 2(2c - ti)]-l 2 A (3.9b)

from (3.5). Even with significantly disturbed but unseparated motion, where S -0 and
A 0 < 0, corresponding to a large positive displacement, non-decaying waves exist since then
(3.9a, b) yield the dispersion relation

a = (-A 0 )(2c - rh) 112 . (3.9c)

These neutral waves can travel upstream [for -1/2<c<0] or downstream [c>0] in
subcritical motion, and downstream in the supercritical case [c > rh/2] (see Fig. 2). Other
ingredients of separated flow likewise tend to produce destabilization. For example, large-
scale eddies with constant vorticity (Ref. 23), rather than zero vorticity as in (3.8), are
modelled in the current regime II by the law P = d1 (T) - 2S2/8, with S -A and d an
undetermined function of time T. So small disturbances are governed by

P = 2SoA/4, (3.10)

and the link with (3.9b) then produces the eigen-relation (3.9c) again but with 2S0 replacing
-A, thus again inducing non-decaying waves.

Separation has a similar de-stabilizing effect in the regime I of Section 2, a point taken up
later in Section 5.

We turn now to the other major feature uniquely captured by the present regime, shock
oscillations or flutter. The basic 2D steady upper-deck motion with an overall pressure rise
from P to P2 may be modelled simply by the form = q, = -P 1 X for X < 0, = 2 =
-P 2 X for X > 0, say over a relatively long scale, for a normal shock (G - 0) at X = 0; here
the uniform pressures P1, P2, satisfy

P, + P2 = 2rm/(y + 1) (3.11)

from (3.6). Small 2D disturbances are therefore controlled by the linearized TSP equations,
in which [ir - (y + 1)PI 2] replace [rh + (y + 1)~x] for X negative and positive respectively
in (3.5a), and by the linearized shock conditions

0 - PG = 2 - P2G, (3.12a)

Gt = ( 4 )(oI + 2X), (3.12b)

at X = 0+ , from (3.6). Oscillatory behavior -exp(iaX - i T), substituted into (3.12a, b),
then gives the jump condition



On boundary-layer transition in transonic flow

02 - o = -(P2 - P ) (2 + 1)s (3.13a)

on elimination of G. So natural oscillations on the downstream (2) side have a wavespeed
c = fl/a which is negative, given by

c = -(y + 1)(P 2 - PI)/4, (3.13b)

if the upstream-side disturbance potential 4, is assumed known. The latter potential has a
natural oscillation speed of -c, i.e. positive, at the shock, although a more significant
property on the upstream supersonic side is the decay rate of the unsteady disturbances as
given earlier in Sub-Section 3.2, which does indeed help to fix the upstream interactive
solution q5, as a single-wave form. The downstream solution 2 can then also be determined
in principle, e.g. by use of characteristics or spatial transforms if the flow there is super- or
sub-critical respectively, coupled with the P- A response due to the boundary layer. The
most intriguing feature there, however, is that the downstream-side flow solution "blows up"
if the wavespeed c of the small disturbances downstream ever matches that of the shock
oscillations in (3.13b), i.e. a resonance occurs. Such a resonance cannot arise for unseparated
motion as that motion cannot support neutral waves anyway (see Sub-Section 3.2). But
resonance can set in for separated motion since its dispersion relation (3.9c) does allow
neutral waves with negative c, as Fig. 2 shows, in the sub-critical range.

The criterion for resonance between the shock flutter and the separation instabilities, then,
is given by (3.9c) combined with (3.13b) (see Fig. 2). This is for a normal impinging shock in

Fig. 2(a). Disturbance structure.
Fig. 2. (a) Nonlinear disturbance structure for regime II where M2 - 1 = O(Re 1

/5). A 2D flow is subjected to a 3D
disturbance of small, O(Re-"l'°), angle to the oncoming flow. This disturbance can interact with a shock present in
the flow; the shock surface is effective only in the free stream. (b) The mechanism for unsteady shock/boundary-
layer interaction causing self-sustaining shock flutter. Motion of the shock downstream causes it to increase in
strength. The boundary layer separates or thickens substantially and undergoes transition, the shock strength is
reduced and the shock moves upstream. (c) Neutral waves on a disturbed boundary layer (displacement = -A >

0), in regime II, for supercritical ( > 0) and subcritical (i < 0) flow.
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SUPERSONIC SUBSONIC

SHOCK STRENGTH
INCREASED

,SPEEDING FLOW-SHOCK
STRENGTH REDUCED

//J//////

Fig. 2(b). Unsteady shock/boundary-layer interaction.

SUPERCRITICAL

a

SUBCRITICAL

-Iml/2

Fig. 2(c). Neutral waves in a disturbed boundary layer.

2D flow. An oblique shock is found to yield a modified version of (3.13b) which allows
downstream-travelling oscillations if the obliqueness is sufficiently pronounced, and 3D
effects (see Section 4) can also modify both (3.13b) and (3.9c). Nevertheless, the predicted
resonance in the simpler model above seems to provide a potentially powerful trigger for
transonic transition to take place; with that in mind, we are conducting computational
studies of the full nonlinear TSP system (3.5) interacting with the boundary layer (3.4),
including the linearized version of Ref. 37 for weaker shocks and no separation as well as the
typical nonlinear inviscid version where P= -A 2 /2 as implied by (3.8), (3.9).

4. Three-dimensional transition properties

With the 2D theory above having established some of the main transonic scales and
viscous-inviscid interactions occurring, we move on here to describe certain of the extra 3D
effects arising in transonic transition. It turns out that these effects can be especially
powerful compared with the 2D effects and they also exhibit a number of nonlinear features
peculiar to the transonic range (see Figs 3-5). Again a start is made with the transonic
regime I defined by (2.2), in Sub-Sections 4.1-4.3, for high frequencies, followed by remarks
on the regime II in Sub-Section 4.4, while 4.5 addresses additional 3D transonic interactions
of both the viscous-inviscid kind and the vortex-wave type. All these 3D flow features are in
addition to and distinct from the previous 2D ones in the sense that they are not merely
passive extensions of the 2D cases. It remains to be seen whether the 3D extension of the
separation-induced properties studied in Section 3 also produces distinct flow features; here
we focus more on the possible non-separated transonic transition processes in 3D, finding in
particular some substantial differences between the linear and nonlinear predicted behavior.

cl IOC~lP/R'lI
~

,1 IClU IC.
o

/cr
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m

Fig. 3(a). A contour plot in (m, /3) space of curves of constant spanwise wave number &, in the 3D high-frequency
limit.

m

Fig. 3(b). A contour plot in (m, P) space of curves of constant scaled group velocity in the x-direction,

CgX = 3 &S5 + m) in the 3D high-frequency limit.
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m

Fig. 3(c). A contour plot in (m, ) space of curves of constant scaled group velocity in the z-direction,

cgz = - ( a~6 ), in the 3D high-frequency limit.f3 & +a

m

Fig. 3(d). A contour plot in (m, ) space of curves of constant AHB 2 = A(4A - A2). If this quantity is positive
the dispersive term in (4.9) leads to spreading and growth like exp(2T/3). If it is negative it leads to focussing and
more rapid growth like exp(2T).
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I;

m

Fig. 4. (a) A contour plot in (m, 3) space of curves of constant A satisfying (4.15a-d).

TIME

Fig. 4. (b). A computational solution of the triad system (4.18a-c).
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M 2-1 0(1)

Fig. 5. Nonlinear disturbance structure for the 3D major modes. Waves are directed outside of the wave-Mach
cone, which makes an 0(1) angle with the oncoming flow.

4.1. Linear 3D properties (regime I)

At high frequencies 12 in the governing system (2.3) it can be seen that 3D modes have the
greatest growth rates, according to linear theory, since the 3D extension of the dispersion
relation (2.5) is

1 2 2 6 + a0 + (4.1

where now

a = 2o + - ma) , (4.lb)

m = 12/ 5m again and z = i14/5p3 defines P. Thus for relatively strong 3D dependence, i.e. as
/3- , ao grows like i 1 /3 and so the spatial growth rate

- a, 1 -3102/3/(21323 ) (4.2)

also increases with increasing /.

We observe that the expansion above alters when/3 is as large as -7/2, with a then O(f13/2 )
and s0 becoming 0(1), although the result (4.2) is retrieved still at relatively large
frequencies. Again, if th remains of size f12/ 5 there is a merging with the so-called minor
mode of Ref. 19, while at larger relative Mach numbers rh of order Qf2 2 /5 the merging with
the major mode is achieved.

More significantly, however, the group velocity cgz associated with the spanwise depen-
dence is in the direction opposite to that of the phase velocity, since

g ( 6-A -2C) - c gz =-(2-- . (4.3)

I



On boundary-layer transition in transonic flow

Here AO = 2& -, B 2
-6, CO= -m&-4 , where the wavenumbers are given by a z =

i('3/5j, 
4 /5/3) with a positive, and aT = -ifl defines the frequency as before, so that the

dispersion relation reads

A 0 + Bo + CO = 1 (4.4)

For example, if p3 is large, then Bo--> 1 and A 0, Co tend to zero, leaving cgx - 3 - but
cgz - - ' is negative. These linear properties match with the 3D results elsewhere, and
they form a stepping-stone for the ensuing nonlinear theory, although some of the nonlinear
features discussed below are found in fact to yield predictions which contrast strongly with
those of the linear theory.

4.2. Strong nonlinear 3D growth (regime I)

This 3D aspect again concerns high frequencies as a guideline although part of it applies also
to lower frequencies (see Fig. 3). Scalings and expansions analogous to those in Sub-Section
2.2 yield the nonlinear pressure-amplitude equation

( A 0) aol i(A a2P0 1 B a2Pol + a2P01- + +2
2 at, a2 dX 1 f a'aZ, p a2

(1 -ip _ �i 4P011 p0 12 (4.5)
212 - 4PP 2 (4.5)

in the group-velocity frame corresponding to the relation aPol/at, + cgxPol/aXl +
cgzaPO/aZ1 = 0 as usual. Hence the reference frame in which the nonlinear disturbance
responds is moving downstream but towards Z = + for 3 positive and negative respective-
ly; the angle from the streamwise direction is cgZlcgx, or -2Bo&l[(6 - A 0 - 2C0)/3]. The
constants appearing above are defined by

A = - {Co - 15 + (1 + 2Ao)F2 + (3A o + 4CO)F)/2, (4.6a)

B = -{(1 + 2Ao)2FP + (3A + 4C,) + 4BOPF} /2, (4.6b)

-=-{Bo + (1 + 2AO)G 2 + 4B} /2 (4.6c)

with F = &Cgx, G = /3 cgz . As a check, for ,3 =0 (4.5) reduces to the 2D equation of
Sub-Section 2.2. For the current case, removing the cross-derivative term by transforming to
the co-ordinates X1, E1, where e, = X - 23AZ1 (&3), converts (4.5) to the form

(1+ A) aPl _ iA ( a2 Pol a2Po\ =(1 -ip 5i(47)
2 t2 t a X

/0 = 2 2

with f = (4AC - B2) 2. So the change of variables [Po, X1, l, t2] =
[A1P, A3 , A4, A2], where A-- 21/2/5&3, (1 + Ao/2)/&, A A2' 2 /&31,

A 2 |Aft2 112/& 3 , leaves us with

OP -i(sgnA)(a +(sgn/H) o2)=(1-i)P-iPl2 (4.8)

oT O a

as the governing nonlinear equation.
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A particular form of solution is the plane-wave form P = exp(-i + ink -in 2T sgn A)
Q(4, ), for which (4.8) reduces to

Q a2 Q
ia iQ Q 1 2 (4.9)

a = Q iQIQI 2

where a = sgn A sgn R. Hence if a = 1 the dispersive term leads to spatial spreading and the
wave amplitude grows exponentially like exp(2i/3), as in the 2D case earlier. If a = -1, on
the other hand, the dispersive term produces spatial focussing and the spiky chaotic-like
nonlinear behavior of Ref. 9. The solution for the value a = -1 is subject to fast growing
short-scaled sideband instability (secondary instability) and the far-downstream response
consists of multiple "spikes" growing rapidly in amplitude at a rate exp(2t) with width
shrinking like exp(-2 T). This nonlinear growth rate is much greater than that for the value
a = 1 which includes the previous 2D case. In consequence the case a =-1 leads on
downstream to the 3D higher-amplitude stage (see below) being reached more rapidly than
in the 2D case.

Both of the signs a = + 1 are possible, depending on the spanwise wavenumber /3. This can
be seen from examination of certain limits as follows. First, at large ,/ we have A--->3,
B - -3, C---> 1, ---> 1/3, and so a = 1, yielding the spatial-spreading response. Second,
however, at small /3 we obtain a = -1 hence spatial focussing. The latter case is connected in
fact with the effects of slight 3D "warping" of an input 2D disturbance (Fig. 3), correspond-
ing to reduced Ial of order n17/2, which delays all the 3D influence until the amplitude-
cubed level. This warped-wave problem has the controlling equation, with = a-5,

- _po i [ 1+ ( 1/2 - )] 2ol, 2PO

(1 +) at2 &2 [1 + (1 + )2 - 2 a2 J

=a 1/2 ) 2 (4.10)

analogous to (4.7) and hence, instead of (4.9),

oQ ic _ 2Q _ 5i
(1 + 0r) a +26 Zi - 2 2Q - j

4QIQ12 (4.11)at2 F 2a6 a6Z / 2

in effect, where Po, = exp(-in2 t2 + inKXI)Q and K- (1 + 0-)1/2[1 + (o-/2 - 1)/
0-(1 + 0)2]

- 1
/2. Here (4.11) corresponds to the spatial-focussing value a = -1, implying

therefore that any slight three-dimensionality in a near-planar incoming disturbance will
force pronounced secondary instability to occur, followed by strong nonlinear focussing and
amplitude growth.

The next stage, after the spatial focussing arises for this warped input and hence induces
higher spanwise wavenumbers locally, tends to bring in the more three-dimensional effects
present in (4.7)-(4.9). But by then the pressure amplitude is so large that a new, more
nonlinear, balance enters play, specifically with IPI increased to order f14/5 along with the
scalings of Sub-Section 2.3 and azl- 4"'5. As a result the controlling equations

AT + AA = -Px , (4.12a)

P-- + Pz = mPxx + 2PXT,YU Z XT (4.12b)
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P--> P, P--- A as y->0 (4.12c)

hold, subject to vorticity bursting from the wall layer. These are the 3D extensions of the 2D
equations presented in Sub-Section 2.3, the three-dimensionality entering via the flow
exterior to the boundary layer.

The two main conclusions here are the following. First, in a time of order (9/40) In l
[three times faster than the pure 2D value, for instance] the slight 3D warping produces
patches of higher-amplitude fully nonlinear action, as governed by (4.12). Second, this
enhanced growth occurring at small 13 for nonlinear disturbances is directly opposite to the
implications for linear disturbances where the growth enhancement is at large f3 (Sub-Section
4.1). Further work (see Ref. 39) indicates that this enhancement of growth by a slight
warping occurs for the entire range 2- 1/2 < M< 1 of Mach number.

4.3. Nonlinear triad interactions (regime I)

These particular triad, or three-wave, 3D interactions have a special form in the transonic
regime I, due to the quasi-planar response in the boundary layer (see Fig. 4). The triads
seem to be a feature specific to higher frequencies rather than to the lower frequencies where
for example vortex-wave interactions tend to be triggered as described in Sub-Section 4.5
below. The governing equations here are again (2.3a-f) but with W -0, as stated earlier,
and so the dispersion relation (2.4) holds for low-amplitude 2D or 3D waves. The nature of
the dispersion relation allows many kinds of resonant triads to occur in principle, at high
frequency fl, but the particular kind which is of interest here involves a 2D wave as input
upstream. In the incompressible regime (Ref. 25) triads are found to boost the otherwise
slower growth rates of oblique waves and bring in 3D effects, via nonlinear interactions at
the amplitude-squared level, re-distributing the energy of the faster-growing 2D wave input.
In contrast, the present transonic dispersion relation identifies the oblique waves as faster
growing (Sub-Section 4.1), which therefore raises the question of how the nonlinear energy
re-distribution occurs here.

It can be established first that transonic triads exist as follows. The high-frequency
dispersion relation is essentially (4. lb) and so three waves proportional to

E, = exp[i{(1 + s)AX + /3Z - (1 + )T}](3D), (4.13a)

E2 = exp[i{AX - T}](2D), (4.13b)

E 3 = exp[i{sAX + 13Z - T)}](3D) (4.13c)

are possible in principle provided their wavenumbers and frequencies comply with (4. b),
and moreover they interact at the amplitude-squared level since

E = E2E 3 , E 2 = E,E, E3 = EE. (4.14)

Here (4.lb) requires the balances

(1 + s)3A 3 = (1 + /)[ 2 (1 + )(1 + s)A + f32 m(1 + s)2A 2 ]11 2 , (4.15a)

A 3 = [2A - mA2 ]1 1 2 , (4.15b)

s3A3 = #,[2gjsA + ,B2 (- msA 2]2
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to be satisfied. So, for given relative Mach number m, the 2D wavenumber A follows from
(4.15b), leaving the equation

R(1 + ) = A + R(/a) (4.15d)

for the possible L values, from (4.15a, c), where s = R(l )IA and R(/L) is the positive root b
of the polynomial equation 06 + m.2k2 - 23q4 -_ /2,2 = 0. Acceptable /a values exist for all
m and /3: see Fig. 4a. For example, the extreme of large /3 yields the asymptotes
/ - /1/ 2/(3A) 3/2 and s - 3., while in the small-/3 extreme we have x -/35 A3 , S _3 2 AA -

where A =- [2(5 - 2mA )]-l, provided/3 m - 1/ 2 for large m.
It is noted here that the two oblique waves E1 , E3 lie to the same side of the 2D one, with

E3 more oblique than E,.
The corresponding nonlinear unsteady-flow solution now expands in the form

U = Y + (UE, + U2 E2 + U3E3 ) + c.c. + O(e
9
) (4.16)

and so on, with E - 1/ '° and U, V, P, A, Y, ax, az , y having been scaled on eq, q = 5, 4, 1,
5, 5, -6, -8, -8, in turn. Here the pressure amplitude O(e) is much less than that required
for the 2D nonlinear response (e-7/2 , Sub-Section 2.2, see also 4.2), the U-velocity disturb-
ance amplitude is comparable with the mean flow, in (4.16), and the amplitudes U., P, etc.,
are slowly varying, with a,---> a + eq, ax --> ax + eqak, etc. At first order the require-
ments in (4.13)-(4.15) are confirmed. Then at second order the nonlinear inertial interplay
brings in the connections (4.14), leading to the nonlinear triad equations

(1 + 2 1)[ dT Cx + gz, Z] = A (2 -)P,-iA h,Vj (4.17)

for j = 1, 2, 3, where Ao = 2h/gA 5, Bj =/ hi lgA 6, Co, = -mhlg]A , cgx, = h,
(6 - A 0J - 2C0,)l[Ag,(2 + A0j)], cgz, = -2h,B0ol[,/(2 + A0 )] or zero, f1 = glh, where gj
(1 + s, 1, s), h = (1 + ,a 1, /.), and V, = (f 2 f 3P2P3 , fif 3PP*, flf 2PP*) defines the non-
linear interaction terms in (4.17).

The governing equations (4.17) are analogous to those in Ref. 25 and the coefficients are
such that no finite-time or -distance breakdown is to be expected. Instead the nonlinear
amplitudes are likely to increase exponentially downstream. Computations (e.g. as for
(4.18a-c) below, in Fig. 4b) should be of interest both here and for the three-oblique-wave
interactions possible. In addition, interactions can also occur, at the same amplitude sizes,
for two extra oblique modes present on the other side of the 2D one, pointing to a pair of
triads inter-linked by the common 2D wave.

Once again the extremes of small and large /3 allow some simplification. If /3 is large there
are two almost identical, relatively fast growing, oblique waves P. and P3 . If we scale
[P., P2 , P3 , T] as [1, p/311/4, 1, p/31/4], i.e. relatively small amplitudes, we retain the non-
linear terms but lose the small growth term in the 2D wave. Factoring out 0(1) constants we
are then left with

PIT k! P1 ip2 p3, (4.18a)

P2T = -iP 1,P , (4.18b)
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P kL q P3 (iP2Pl ' (4.18c)

See computations in Fig. 4b. If /3 is small there are two almost identical but nearly 2D waves

PI, P2 with slow growth and one almost stationary but very oblique 3D wave, P3. It is P3 that
is responsible for extracting energy from the mean flow. Scaling [P., P2, P3, T] as
[f-312, /-3/2, 35/2, /31/2] and again factoring out O(1) constants yields the equations

PIT = -iP2P3, (4.19a)

P2 = -iP*P3j, (4.19b)

P3T ~ V(1 -i)P3T P3 -iP 1 P . (4.19c)

These reduced sets need to be treated numerically to follow the triads' behavior. In both
cases there is the possibility of nonlinear interaction activating the 2D modes and possibly
causing an increased growth on the more rapid time-scales associated with the oblique
waves.

4.4. Three-dimensional effects in transonic regime II

Many of the 3D effects present in the alternate transonic regime II are described already in
Section 3. The main additional remark to make here is that, since the non-separated flow is
always stable to small disturbances in this regime, most of the nonlinear 3D interactions just
investigated (Sub-sections 4.2, 4.3) cannot arise here since they are relatively low-amplitude
phenomena. A possible exception is the higher-amplitude stage corresponding to (4.12).
Apart from that, transition in this regime seems likely to be triggered either by (2D or 3D)
separation as in 3.3 or by the nonlinear 3D interactions discussed in the next sub-section,
both of these being in a sense by-pass transition processes.

4.5. Distinct 3D regimes and interactions

There are two extra nonlinear interactions to consider briefly, both of which are distinctly 3D
in nature and rather divorced from the previous transonic regimes.

One is identified essentially in Ref. 21, as a so-called major limit. Its governing equations
are (2.3) in effect but with the spanwise pressure gradient Pz added to (2.3c) and with the
contributions PXX, PXT omitted in the TSP balance, i.e.

Ps + PZZ = 0, (4.20a)

yielding a P-A relation in terms of a Cauchy integral in Z. This transonic 3D interaction is
intriguing partly because it is independent of the Mach number, applying therefore to both
regimes I, II in particular, and partly because it is very unstable on linear grounds (hence the
term 'major', Ref. 21), more so than the other interactions found. It also exhibits strong
nonlinear growth for sufficiently oblique 3D waves, due to the high-frequency dispersion
relation

(4.20b)
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which shows that the streamwise and spanwise group velocities are minimum and maximum,
respectively, for waves at a critical angle

0-crit = sin-(3 1 1'4/2'/2) = 68.530 (4.20c)

from the streamwise direction, corresponding to a2 = 31/4(31/2- 1)/23/2. Consequently an
amplitude-cubed nonlinear balance, analogous to those in Sub-Sections 2.2, 4.2, leads after
some working to the equivalent of (4.9), with the angle (4.20c) corresponding to the
crossover from the value a = 1 to a = -1. The strong nonlinear 3D growth, associated with
spatial focussing, occurs for wave angles exceeding the critical value (4.20c).

This enhanced 3D growth, at the larger wave angles, contrasts with the finding in (4.2) of
enhanced 3D growth at small wave angles.

The other remaining aspect concerns vortex-wave interactions, which can occur in all the
3D transonic regimes. The typical controlling equations consist of (2.3a-c) for the vortex
over a long spatial scale, with Px absent, coupled with an ordinary-differential equation for
the wave-pressure acting on a shorter scale; the nonlinear coupling here is through the vortex
wall-shear, which affects the coefficients in the wave-pressure equation, and through an
amplitude-squared forcing exerted by the wave pressure on the vortex motion. The details
are given in Ref. 28 for interactions between vortex flow and compressible TS waves, while
Ref. 27 addresses the interactions arising with compressible Rayleigh waves. Even though
the wave amplitude is relatively small it affects the mean flow at leading order, i.e.
completely alters the mean-flow profiles, and so the vortex-wave interactions are potentially
powerful phenomena. Moreover, they can arise at any Mach numbers including those
addressed in Sections 2, 3, although the flow structures involved are not necessarily the same
as in those sections. Vortex-wave interaction can also provide a by-pass transition mechanism
since it does not rely on the prior existence of linear instabilities; the full properties of these
interactions are still under investigation.

5. Further discussion

The main result of this work on transonic transition is that the mechanisms behind the three
major factors described at the outset, (a) substantial external-flow deceleration, (b) rapid
boundary-layer thickening, (c) 3D nonlinear interactions, have been identified.

Concerning factors (a), (b), two predominant types of unsteady 2D transonic interaction
have been found, in Sections 2, 3. The first which acts as a springboard for the rest of the
theory is governed by the linearized-TSP equations linked with the unsteady IBL equations
via pressure-displacement interaction, as studied in Section 2. This type captures gradual
transition and is found to have some significant properties, but it cannot account readily for
the considerable external deceleration, e.g. with a shock, which seems crucial according to
(a) above. In addition, many of its transition implications examined turn out to be simply
quasi-incompressible, which, although of interest, appears to restrict its relevance here. The
second type of interaction, by comparison, seems most relevant to (a) and (b). Its governing
equations are the nonlinear TSP equations and the quasi-steady IBL equations, linked
together through pressure-displacement interaction as discussed in Section 3. This is a
relatively low-frequency response and can incorporate, as required, the effects of an
unsteady external shock or other substantial external behavior, while allowing for transition
and/or separation downstream in the boundary layer. Another advantage here is that the
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linkage captured in Section 3, if self-sustaining as seems likely, provides the means for
by-pass rather than gradual transition, which again is as required at the outset. The powerful
by-pass arises here for two reasons: on the one hand, nonlinear instability is very sensitive to
the boundary layer's pressure-displacement response, with the factor (b) above being found
to de-stabilize the flow readily [see Sub-Section 3.3]; and, on the other, the shock-flutter
phenomenon can be regarded as one of receptivity, i.e. given a shock oscillation, say due to
free-stream unsteadiness, Sub-Section 3.3 enables the boundary-layer effects to be de-
termined and then an estimate to be made for the resonance criterion between the shock
oscillation and the internal instability.

The factor (c) concerning 3D transition effects is likewise a very sensitive one in the
transonic range. The 3D effects tend to matter most in the motion just outside the boundary
layer, due essentially to the reduction in the typical streamwise length scales, induced by
transonic flow. This therefore produces certain novel 3D interactions, as addressed in
Section 4. Most of these 3D responses can start from secondary instability of a 2D input
upstream but their subsequent nonlinear behavior is of most interest, as it often contrasts
with the linear predictions. In particular, new nonlinear resonances can occur (Sub-Section
4.3) between a 2D input disturbance and two 3D oblique disturbances, throughout the
transonic range, and increase the overall growth rate. Again, nonlinear 3D disturbances
alone can focus, and amplify strongly, if they are directed sufficiently far outside or well
inside the wave-Mach-cone direction (see Sub-Sections 4.2, 4.5). An even slight 3D warping
in a near-planar input disturbance (Sub-Section 4.2) causes a similar focussing and strong
amplification downstream. Thus in 3D there appear to be nonlinear mechanisms which can
pour energy into the less oblique disturbances, for instance, and force them to acquire full
nonlinear status downstream, i.e. produce transition, much sooner than would be the case in
2D. It is clear overall that these 3D effects, and vortex-wave forms like that in Sub-Section
4.5, are very powerful and "dangerous" in the transonic regime of concern.

Several issues which are not so directly relevant, as yet anyway, should also be mentioned
for the record. One is the alternative scenario suggested by analogy with Refs 17, 18. If the
strength or upstream movement of the shock is sufficiently large and separation occurs, then
the local reversed-flow breakdown of Ref. 18 can arise (within the quasi-steady IBL of the
regime in Section 3), thereby bringing about a collapse of the otherwise large-scale
separation for instance, at a finite time. The collapse, accompanied by fast transition, tends
to reduce the downstream pressure however and hence decreases the shock strength. This in
turn reduces the flow reversal and so suppresses the local breakdown and transition. So the
downstream pressure can then rise again and the pattern may repeat itself, giving overall a
self-sustaining oscillation between the shock and the separation. A very similar pattern can
be envisaged for the unsteady IBL in the regime of Section 2, due to the unsteady finite-time
break-up of Ref. 17 for such IBL flows. Obviously, 2D and 3D computations based on the
formulations of Sections 2-4 would be helpful here, and indeed this aspect of transition,
which is relevant to intermittency, is still the subject of separate continuing research even in
the incompressible regime. The second issue, given the sensitivity of the transonic transition
to boundary-layer thickening (see (b) above), surrounds the various kinds of separation
possible, principally whether the separation is small- or large-scale. One kind is examined in
Section 3. Another kind however is for the transonic regime of Section 2 where in effect
unsteadiness acts explicitly within the boundary layer, adding contributions aU/a T,aSlaT,
a(S + A)IaT to (3.8a-c) respectively, which then alters the responses (3.9a, c), (3.10). For
instance, the TSP coupling leads here to the dispersion relation a 3S _- a2- ± 2(2f /
a - m)1/ 2 = 0, or a = +c2 (2c - m)1/ 21(c - So), in the case where -Ao- S. This again
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admits neutral subsonic or supersonic waves, as in Section 3, and some supersonic long-wave
growth, but the violent instability of the Kelvin-Helmholtz type that occurs for the pure
subsonic or supersonic boundary layer (Ref. 23) is suppressed in the current transonic range.
Third, other aspects of the theory are summarized in the Appendices. Finally here, the
influences of surface cooling are considered in recent joint work involving the authors, Ref.
24. There it is shown that the cooling not only accentuates inviscid instability, in line with
previous predictions, but also greatly enhances the viscous-inviscid TS growth, eventually
making it even exceed that of the inviscid modes. This again is a dangerous feature.

The main implications in the nacelle-flow context with which we began appear to be the
following. While more research is undoubtedly needed on the mechanisms found for (a)-(c)
above, the results so far tend to indicate that suppression of the features, or dangers, (a)-(c)
is desirable if transition and its consequent flow penalties are to be avoided in practice. Thus
the 3D geometrical warping mentioned at the start is undesirable as it can lead to danger (c).
Pronounced adverse pressure gradients are equally undesirable, as they can provoke the
linkage between the dangers (a), (b); and smooth surfaces seem necessary, to avoid by-pass
transition throughout the transonic range.

The further research just mentioned is to be based on the present theoretical treatment of
the Navier-Stokes equations which leads to reduced systems of nonlinear unsteady equations
capturing the appropriate external-internal interaction, at the high Reynolds numbers of
practical interest. Previous such studies have established a firm tie-in with boundary-layer
transition experiments in the incompressible case, while the present study lays the founda-
tions for the transonic-flow features (a)-(c) in particular, for the approximate range 0.8-1.2
in local Mach number. The nonlinear effects discussed here are believed to be very strong
candidates for explaining the transonic nacelle transition process, and further analytical and
computational work based on the mechanisms found above for (a)-(c) is under way.
Comments on the alternative eN method (see e.g. Refs 13-16) should also be made here. In
brief, the quasi-parallel eN methodology which is based on linear Orr-Sommerfeld theory
seems without doubt of high engineering value for gradual or natural transitions which start
from initially linear disturbances, in a mildly-varying and low-disturbance environment. It is
likely to be of much less value and reliability in the stronger, e.g. by-pass, transition
processes like that operating in the transonic nacelle flow (see above), however, simply
because of the nonlinear nature of such transitions. By-pass transition by definition requires
a nonlinear theory to be applied. The current aim is to develop the relevant nonlinear theory
(e.g. [17, 31, 40, 41]). Along with this, subsequent comparisons can be made between the
theory and the earlier methodology for weaker environments, both as a check and as an
alternative method, and then the enhancement of transition as nonlinearity increases can be
tracked.

Our conclusion, then, is that the transition in certain transonic flows, including the nacelle
flow, is a strong nonlinear phenomenon, produced by the linkage between the boundary
layer and the external unsteady transonic flow, as in the mechanisms found for the major
features (a)-(c). Other transonic-flow configurations may be described by lower-amplitude
transition. The broad area seems to merit much further research, and it is hoped that
clarification of the transition criteria describing the dependence of transonic transition on the
disturbance environment and pressure gradients will emerge from the research. Extensions,
to transonic flow, of the nonlinear transition predictions in Refs 17, 40, 41, 43 in particular
could prove of much interest.

Much of this work was done during 1988-89 and appeared originally as Ref. 42 in 1989,
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while further details on the 3D theory, on upstream influence, on the resonant triads
described in Section 4 (including their solution at large times), and on the large-m limit, are
given in Ref. 39. The authors wish to thank Drs Wes Lord, Jim Carter, Mike Werle and
colleagues for numerous very helpful suggestions and comments, and United Technologies,
AFOSR (grant no. 89-0475) and S.E.R.C., U.K., for financial support.

Appendix A - The connections with other flow regimes

Here the links between the theory and results in the main text and those for certain other
flow regimes are described.

First, the 3D version of the transonic interaction I addressed in Section 4 matches at large
rhii with the theory of [21, 22] in the supersonic or subsonic case. The other 3D interaction

in Section 4, for waves directed well outside the wave-Mach cone, yielding larger linear
growth rates, is identical with one in [21]. In the former case the spanwise pressure gradient
is negligible inside the boundary layer and the outer flow is significantly unsteady, whereas in
the latter case the streamwise pressure gradient is negligible in the (quasi-steady) outer flow,
producing a corresponding lack of Mach-number dependence.

Second, the 2D wave-packet result in Section 2.2 connects with that for incompressible or
subsonic flow in [20] when m -- o in (2.10a), with a, a,2, P01 being of order Im 3/8,
mil 4 , ml-3'/8 in turn, as Iml becomes of order Re' 9 . The nonparallel-flow result (2.15)

matches similarly.
A third link is between the high-frequency dispersion relation (2.5) and that for inviscid

inflexional waves where the compressible Rayleigh equations holds (Ref. 31). This link is
analogous to that for the nonlinear theory as discussed in Sections 2.3, 2.4, and it occurs for
x,aTr M, M 2 -1 and the wavespeed c becoming of size Re'/23/2ao, Re1/2E5s2Q0, Em and

efl0 /a = ec O respectively, for small e. These scales match with those obtained from
analyzing the compressible Rayleigh equation directly. Higher-order matching however,
which controls the small growth rates, seems to bring in critical-layer effects in an
intermediate viscous-inviscid regime (cf. Ref. 21), the scales involved then depending on the
wall conditions. Thus for an adiabatic wall we have c - 6, the length scale L 8 7, the time
scale T- 86, with M 2 - 1 - , a lower region (including the critical layer) of thickness
Re- /28, a Stokes-layer thickness Re-'/263 and an outermost (unsteady) region of thickness
Re"26 2, where - Re-' 17 . For a cooled or heated wall, in contrast, c - 6, L - 5, T-5 64
M2, -1 - and the thickness above become in turn 5 Re -

1/2, Re-"/262, Rel 2 5 18 , with now
6 - Re- "13 . In each case v expands in the form Re-'/3L-'(vo + Sv, + 5 2v2 + · · ), say, and
the critical layer is required to smooth out the logarithmic irregularity, in v2, for the
adiabatic wall, or in v, for the cooled/heated wall, which then provokes a phase shift of -
for linear disturbances. This shift balances the phase shift produced by the Stokes layer.
Nonlinear effects can come into play at low amplitudes inside the critical layer.

Finally, the progression from lower-branch through upper-branch to compressible-
Rayleigh properties, at increasing m, ties in with the cut-off enforced by the required decay
of disturbances in the free stream. The disturbances must be subsonic relative to the free
stream (Refs 21, 35), i.e. c > 1 - M,' or, in our notation c > rhm/2, where the speed 1 - M 1'
is that of the slowest characteristic or sound wave in the free stream. Increasing mh therefore
forces c to increase, producing a move away from viscosity-induced TS waves.
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Appendix B - Supercritical modes

Here the effect of the weakened viscous-inviscid interaction as mh on the waves
mentioned at the end of Appendix A is considered for 2D motions.

As rh---> the scales are

[U, V, P, A]-[,h, -', ri, ],

[aX,aT,ay,ay] _ [ -3 2, m -1, m -7]

and (2.3e) becomes

1 _ - -

-9 PY = Pxx + 2PXT (B1)

whilst the lower-deck equations (2.3a, b), though in new variables, are unchanged. Here
(B1) shows that as mh increases the determination of the wave speed becomes inviscid to first
order and governed by the right-hand side of (B1). Essentially any disturbance moves
downstream with the speed of the slowest sound wave in the freestream. Moving in this
travelling frame, in which the unsteadiness is slow, O(hm-9), i.e. making the transformation

1
aT 2- x+i+m at, (B2)

alters (2.3) to

Pj = 2PxT,

1 1
- U + UUx + VUy + p UT =-Px+ UyY (B3)

P= Axx, P= P, at y=O0 and U-Y+A as Y--oo.

This nonlinear system with rh = o has a lower-deck equation corresponding to a boundary
layer over an upstream-moving wall and is subject to possible singularities. A linearised
version for, say, a small-amplitude wave of frequency 1f yields the dispersion relation

1 (2ooa) 2 Ai'(o0 )
(ia) 1 /3 a2 k(B4)

with o0 = -(ia)'/3 /2 and ia = ax fixed by (B2) to be 2ifl. Thus (B4) determines -io = -T.
The m -9 term in (B3) affects matters at a higher order. We may gauge its effect on a slow

spatial growth-nonlinearity balance for an 0(1) value of w and derive a Stuart-Watson
equation for a wave near the neutral point, determined from (B4) via a suitable multi-scale
analysis of the following system,

P = 2Pxt,

eU - U x + (AY + U)U x + (A + E Uy)V= -Px + Uyy, (B.5)

Ux+ Vy=O,

U- A as Y-- , and P, =AX, P = P, at y=O
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with the small parameter e = (rh -9, -912, m -3), P (rh -7, rh -3/2, 1) for n = 1, 2, 3. Here
A(x) is the slowly varying skin-friction parameter. For n - 3 the disturbance amplitude is so
great and the development is so rapid that the weak a feedback into the boundary layer has
no influence. This is similar to the behavior in Appendix C, where a weakly nonlinear
analysis for large w is presented.

If rh becomes of the order of a power of Re, the expansion behind (2.3) fails due to the
travelling frame moving, in the time associated with at and the decay of disturbances in the
free stream, a distance sufficiently large that the weaker effects of compressibility or
boundary-layer non-parallelism become important. The effects of a cooled/heated wall,
adiabatic wall or non-parallelism balance the aT unsteadiness in the boundary layer when
M 2, - 1-Re / 10, Re - /", Re -

1
/1 2 respectively. These are higher-order effects for the

disturbance primarily governed by (B3) with tm = o, although a multi-scale type of analysis
of the Navier-Stokes equations could gauge their effects. However when M - 1 - Re 1/12

the triple-deck structure moves an O(1) distance downstream, the normalization (2.1a-c)
implicit in (B3) varies with T, and the non-parallelism becomes nontrivial.

On increasing M 2 -1 to O(1) the triple-deck structure moves an O(Re) distance
downstream over the time scale of the interaction. What this represents is as yet unclear.
The weakening interaction implied in a stationary triple-deck structure suggests that any
disturbances on a flat plate must decay normally within the boundary layer itself, or be
governed by the supersonic version of the viscous interaction which allows radiating waves
but yields only stable (linear) waves. Again, the linear stability of the boundary layer is more
likely to be determined by the properties of oblique viscous-inviscid waves, lying outside of
the wave cone (Ref. 21), which widens as rh increases, than by the 2D structures mentioned
here whose form is necessitated by the requirement of decay of disturbances in the free
stream.

Appendix C - Further aspects of the transonic regime I

Values of the relative Mach number nh different from those in Section 2 can give rise to new
linear and nonlinear balances, some of which are considered below. The first concerns rh of
order /112 at high frequencies, for which (2.5) suggests that a - 2m-1 + O(m- 6 ) in the
supercritical case. The relative error in this result, combined with the weak effects of viscous
growth, dispersion and nonlinearity indicated by (2.10a), point to the scales

m = m 1 f'/ 2, (X, Y, T, y)-- O(f - 1/ 2 , -- 1/2 , 2-1, 1/2) , (C1)

(U, V, P, A) O(1, 1,1/2, 1), (C2)

followed by the multi-scaling

md r'- 2 Q1/2 1+Q *] (C3)aT, _Ma + - a, a,-a, + -'a,2 + .£ 1 ,3)

ax- a0 +n " 2 ax, + fY'a, +X2 (C4)

for the governing equations, which now have the form

- U + -1'/2(U, + UU + VU) = -Px + U (CS)
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Py: = 2PX,, (C6)

replacing (2.3b, e) respectively, in view of the downstream travel at the sound speed in (C3).
The nonlinear theory for a wave proportional to exp(iaX0 - iot 0 ) in this moving frame at
leading order proceed much as in Section 2.2 but with some differences. Thus first-order
terms yield the dispersion relation

m,(2wa) t /2 = 2a 2 ; (C7)

second-order terms produce harmonics, a mean-flow correction, and the modified-group-
velocity result

aPol aPo, ia °

at, aX 2b 5

where cg = 3 wa-', b = a m,/2; and at third order the pressure-amplitude equation

b aP0 , _ 3i a2P0, 5a 4 aPo,

a5 dt 2a2 b ax 2 2b4 ax,

a( 1-i) 7ia'0 5ia4 P0 l12

21/2b52 P°01- 8b7 PO- 2b4 (C9)

is obtained. Since the constant b must equal one, however, a moving-frame transformation
applied to (C9) shows that in the end there is no qualitative difference from the nonlinear
balance (2.10a) and its results summarized in Section 2.2.

The second new stage that we have studied is at still larger I , where the interaction
between the inner and outer flows weakens, e.g. Ifl -n5/8 or fQ"' 4. Omitting the details,
we find again that, despite certain new balances appearing, in a frame moving essentially
with the sound speed the amplitude equation for weak nonlinearity exhibits no significant
differences from (2.10a).

Third, in contrast, is the fully nonlinear stage at high frequencies where the boundary
layer is governed by

ml
- Ax + AA = -Px (C10)

instead of (2.3a-d), and the TSP equation (2.3e) is replaced by

Pyy7 = 2PXT . (C11)

This stage results for example from increased amplitudes in the stages mentioned just above.
Here (C10), (Cll) with the appropriate boundary conditions lead to a single nonlinear
integral equation [related to (2.12a, b) in a moving frame although the boundary layer is
quasi-steady here]

(B -1) 2 = 1-T X a2B(-, -)" 2dd (C12)
f- (T- 7)112(X _ )12

for B(X, T)- 2m 'A, with normalized X, T coordinates, subject to B-- 0 as lXI -- oo. It is
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noted that the cases B = -1, 0 correspond to stationary motion and sonic travel respectively
in the laboratory frame. Viscous sublayer properties can still be substantial, as described in
Sub-Section 2.3, but the properties of the inviscid equation (C12) alone, and its 3D
counterpart, may well be of much interest. This is reinforced to some extent by the finding in
Ref. 17 that break-up of the full system (2.1) is controlled by predominantly inviscid
features. A computational investigation of (C12) would seem well worthwhile.
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